Jedlovszky Pál publikációs listája
1. Application of a quartz-crystal microbalance in the study of ion and solvent sorption in polymer film
electrodes. I.
Gy. Inzelt, P. Jedlovszky, K. Martinusz, and P. Hudáky
Acta Chimica Hung. 128, 797 (1992), magyarul: Magyar Kémiai Folyóirat 96, 263 (1990).
2. Reverse Monte Carlo simulation of liquid water
P. Jedlovszky, I. Bakó, and G. Pálinkás
Chem. Phys. Letters 221, 183 (1994).
3. Reverse Monte Carlo Simulation of a Heteronuclear Molecular Liquid: Structural Study of Acetonitrile
T. Radnai and P. Jedlovszky
J. Phys. Chem. 98, 5994 (1994).
4. Network of strongly interacting atoms in liquid argon
G. Pálinkás and P. Jedlovszky
Chem. Phys. 185, 173 (1994).
5. Investigation of the structure of liquid formic acid
I. Bakó, P. Jedlovszky, G. Pálinkás, and J. C. Dore
in: Hydrogen Bond Networks (Proceedings of the NATO ASI, Ser. C, Vol. 435), eds.: M. C.
Bellisent Funel and J. C. Dore, Kluwer (Dordrecht), 1994, pp.119-127.
6. A reverse Monte Carlo and RISM integral equation study of liquid nitrogen
T. Radnai, I. Bakó, P. Jedlovszky, and G. Pálinkás
Mol. Phys. 83, 495 (1994)
7. Monte Carlo simulation of liquid acetone with a polarizable molecular model
P. Jedlovszky and G. Pálinkás
Mol. Phys. 84, 217 (1995).
8. Structural investigation of liquid formic acid: X-ray and neutron diffraction and reverse Monte Carlo
study
P. Jedlovszky, I. Bakó, G. Pálinkás, and J. C. Dore
Mol. Phys. 86, 87 (1995).
9. Local order in some aprotic dipolar liquids
T. Radnai, I. Bakó, P. Jedlovszky, and G. Pálinkás
Mol. Simul. 16, 345 (1996).
10. Investigation of the uniqueness of the reverse Monte Carlo method: Studies on liquid water
P. Jedlovszky, I. Bakó, G. Pálinkás, T. Radnai, and A. K. Soper
J. Chem. Phys. 105, 245 (1996).
11. Reverse Monte Carlo analysis of neutron diffraction results: Water around its critical point
P. Jedlovszky and R. Vallauri
J. Chem. Phys. 105, 2391 (1996), Erratum: J. Chem. Phys. 106, 2988 (1997).
12. A New Five-Site Pair Potential for Formic Acid in Liquid Simulations
P. Jedlovszky and L. Turi
J. Phys. Chem. A 101, 2662 (1997), Erratum: J. Phys. Chem. A 103, 3796 (1999).
13. Role of the C-H...O Hydrogen Bonds in Liquids: A Monte Carlo Simulation Study of Liquid Formic
Acid Using a Newly Developed Pair Potential
P. Jedlovszky and L. Turi
J. Phys. Chem. B 101, 5429 (1997), Erratum: J. Phys. Chem. B 103, 3510 (1999).
14. Structural study of liquid methylene chloride with reverse Monte Carlo simulation
P. Jedlovszky
J. Chem. Phys. 107, 562 (1997).
15. Orientational correlation in liquid and amorphous carbon tetrachloride: A reverse Monte Carlo study
P. Jedlovszky
J. Chem. Phys. 107, 7433 (1997).
16. Computer simulation study of liquid HF with a new effective pair potential model
P. Jedlovszky and R. Vallauri
Mol. Phys. 92, 331 (1997).
17. Computer simulations of liquid HF by a newly developed polarizable potential model
P. Jedlovszky and R. Vallauri
J. Chem. Phys. 107, 10166 (1997).
18. Structural properties of liquid HF: a computer simulation investigation
P. Jedlovszky and R. Vallauri
Mol. Phys. 93, 15 (1998).
19. Investigation of the orientational correlation of the molecules in liquid H2S with reverse Monte
Carlo simulation
P. Jedlovszky
Mol. Phys. 93, 939 (1998).
20. Analysis of the hydrogen bonded structure of water from ambient to supercritical conditions
P. Jedlovszky, J. P. Brodholt, F. Bruni, M. A. Ricci, A. K. Soper, and R. Vallauri
J. Chem. Phys. 108, 8528 (1998).
21. The anisotropic virial-biased sampling for simulations in the isobaric-isothermal ensemble
P. Jedlovszky and M. Mezei
Mol . Phys. 96, 293 (1999).
22. Computer simulation study of liquid CH2F2 with a new effective pair potential model
P. Jedlovszky and M. Mezei
J. Chem. Phys. 110, 2991 (1999).
23. Comparison of different water models from ambient to supercritical conditions: a Monte Carlo
simulation and molecular Ornstein-Zernike study
P. Jedlovszky and J. Richardi
J. Chem. Phys. 110, 8019 (1999).
24. Voronoi polyhedra analysis of the local structure of water from ambient to supercritical conditions
P. Jedlovszky
J. Chem. Phys. 111, 5975 (1999).
25. Temperature dependence of thermodynamic properties of a polarizable potential model of water
P. Jedlovszky and R. Vallauri
Mol .Phys. 97, 1157 (1999).
26. Monte Carlo simulation of a lipid bilayer in the grand canonical ensemble using extension biased
rotation
P. Jedlovszky and M. Mezei
J. Chem. Phys. 111, 10770 (1999).
27. A molecular level explanation of the density maximum of liquid water from computer simulations
with a polarizable potential model
P. Jedlovszky, M. Mezei, and R. Vallauri
Chem. Phys. Letters 318, 155 (2000).
28. The change of the structural and thermodynamic properties of water from ambient to supercritical
conditions as seen by computer simulations
P. Jedlovszky, R. Vallauri, and J. Richardi
J. Phys.: Condensed Matter 12, A115 (2000).
29. Calculation of the free energy profile of H2O, O2, CO, CO2, NO and CHCl3 in a lipid bilayer with a
cavity insertion variant of the Widom method
P. Jedlovszky and M. Mezei
J. Am .Chem. Soc. 122, 5125 (2000).
30. The shear viscosity of liquid water from computer simulations with a polarizable potential model
U. Balucani, J. P. Brodholt, P. Jedlovszky, and R. Vallauri
Phys. Rev. E. 62, 2971 (2000).
31. A Comprehensive Liquid Simulation Study of Neat Formic Acid
P. Mináry, P. Jedlovszky, M. Mezei, and L. Turi
J. Phys. Chem. B 104, 8287 (2000).
32. Can the molecular Ornstein-Zernike theory be used to study H-bonding water under supercritical
conditions?
J. Richardi, P. Jedlovszky, P. H. Fries, and C. Millot
J. Mol. Liquids 87, 177 (2000).
33. Molecular clusters in liquid methanol: a Reverse Monte Carlo study
I. Bakó, P. Jedlovszky, and G. Pálinkás
J. Mol. Liquids 87, 243 (2000).
34. The local structure of various hydrogen bonded liquids: Voronoi polyhedra analysis of water,
methanol, and HF
P. Jedlovszky
J. Chem. Phys. 113, 9113 (2000).
35. Orientational Order of the Water Molecules Across a Fully Hydrated DMPC Bilayer. A Monte
Carlo Simulation Study
P. Jedlovszky and M. Mezei
J. Phys. Chem. B 105, 3614 (2001).
36. Thermodynamic and structural properties of liquid water around the temperature of maximum
density in a wide range of pressures. Computer simulation study with a polarizable potential model
P. Jedlovszky and R. Vallauri
J. Chem. Phys. 115, 3750 (2001).
37. Comparison of polarizable and nonpolarizable models of hydrogen fluoride in liquid and supercritical
states. A Monte Carlo simulation study
P. Jedlovszky, M. Mezei, and R. Vallauri
J. Chem. Phys. 115, 9883 (2001).
38. The L/L interface and adsorption of SCN- anions as studied by different molecular simulation
techniques
Á. Vincze, P. Jedlovszky, and G. Horvai
Anal. Sci. 17, i317 (2001).
39. New insight into the orientational order of water molecules at the water/1,2-dichloroethane interface:
A Monte Carlo simulation study
P. Jedlovszky, Á. Vincze, and G. Horvai
J. Chem. Phys. 117, 2271 (2002).
40. Role of Base Flipping in Specific Recognition of Damaged DNA by Repair Enzymes
M. Fuxreiter, N. Luo, P. Jedlovszky, I. Simon, and R. Osman
J. Mol. Biol. 323, 823 (2002).
41. Investigation of the thermodynamic properties of a polarizable water model in a wide range of
pressures around the temperature of maximum density
P. Jedlovszky and R. Vallauri
in: Liquids Under Negative Pressure (NATO Science Series, Ser. II, Vol. 84), eds.: A. R. Imre, H. J.
Maris, and P. R. Williams, Kluwer (Dordrecht), 2002, pp. 47-57.
42. Temperature of maximum density line of a polarizable water model
P. Jedlovszky and R. Vallauri
Phys. Rev. E. 67, 011201 (2003).
43. Effect of Cholesterol on the Properties of Phospholipid Membranes. 1. Structural Features
P. Jedlovszky and M. Mezei
J. Phys. Chem. B 107, 5311 (2003).
44. Effect of Cholesterol on the Properties of Phospholipid Membranes. 2. Free Energy Profile of
Small Molecules
P. Jedlovszky and M. Mezei
J. Phys. Chem. B 107, 5322 (2003).
45. Adsorption of apolar molecules at the water liquid/vapor interface. A Monte Carlo simulation study
of the water - n-octane system
P. Jedlovszky, I. Varga, and T. Gilányi
J. Chem. Phys. 119, 1731 (2003).
46. Properties of water/apolar interfacesas seen from Monte Carlo simulations
P. Jedlovszky, Á. Vincze, and G. Horvai
J. Mol. Liquids 109, 99 (2004).
47. Effect of Cholesterol on the Properties of Phospholipid Membranes. 3. Local Lateral Structure
P. Jedlovszky, N. N. Medvedev, and M. Mezei
J. Phys. Chem. B 108, 465 (2004).
48. Full description of the orientational statistics of molecules near to interfaces. Water at the interface
with CCl4
P. Jedlovszky, Á. Vincze, and G. Horvai
Phys. Chem. Chem. Phys. 6, 1874 (2004).
49. Adsorption of 1-octanol at the free water surface as studied by Monte Carlo simulation
P. Jedlovszky, I. Varga, and T. Gilányi
J. Chem. Phys. 120, 11839 (2004); Virt. J. Biol. Phys. Res. 7 (12), 2004.
50. Free volume properties of a linear soft polymer. A computer simulation study
M. Sega, P. Jedlovszky, N. N. Medvedev, and R. Vallauri
J. Chem. Phys 121, 2422 (2004).
51. Implementation of the Voronoi-Delaunay Method for Analysis of Intermolecular Voids
A. V. Anikeenko, M. G. Alinchenko, V. P. Voloshin, N. N. Medvedev, P. Jedlovszky, and M. L. Gavrilova
in: Proceedings of the 4th Workshop of Computational Geometry and Applications, Lecture Notes in
Computer Science 3045 (Springer, Berlin, 2004), vol. III, pp.217-226.
52. The hydrogen bonding structure of water at the vicinity of apolar interfaces. A computer simulation study
P. Jedlovszky
J. Phys.: Condensed Matter 16, S5389 (2004).
53. Morphology of Voids in Molecular Systems. A Voronoi-Delaunay Analysis of a Simulated DMPC
Membrane
M. G. Alinchenko, A. V. Anikeenko, N. N. Medvedev, V. P. Voloshin, M. Mezei, and P. Jedlovszky
J. Phys. Chem. B 108, 19056 (2004).
54. Orientational order of the water molecules at the vicinity of the water-benzene interface in a broad
range of thermodynamic states, as seen from Monte Carlo simulations
P. Jedlovszky, Á. Keresztúri, and G. Horvai
Faraday Discuss. 129, 35 (2005).
55. Liquid-vapor and liquid-liquid phase equilibria of the Brodholt-Sampoli-Vallauri polarizable water model
P. Jedlovszky and R. Vallauri
J. Chem. Phys. 122, 081101 (2005).
56. Computer simulation study of intermolecular voids in various unsaturated phosphatidylcholine lipid
bilayers
A. L. Rabinovich, N. K. Balabaev, M. G. Alinchenko, V. P. Voloshin, N. N. Medvedev, and P. Jedlovszky
J. Chem. Phys., 122, 084906 (2005), Virt. J. Biol. Phys. Res. 9 (5), 2005.
57. Aggregation properties of the nonionic surfactant C8E3 in bulk water and at the free water surface
A. Paszternák, É. Kiss, and P. Jedlovszky
J. Chem. Phys. 122, 124704 (2005).
58. Calculation of the Hydration Free Energy Difference Between Pyridine and its Methyl-Substituted
Derivatives by Computer Simulation Methods
L. Pártay, P. Jedlovszky, and G. Jancsó
J. Phys. Chem. B 109, 8097 (2005).
59. The Structure of the Acetone Liquid-Vapor Interface as Seen from Monte Carlo Simulations
L. Pártay, P. Jedlovszky, and G. Horvai
J. Phys. Chem. B 109, 12014 (2005).
60. Line of percolation in supercritical water
L. Pártay and P. Jedlovszky
J. Chem. Phys. 123, 024502 (2005).
61. Effect of Cholesterol on the Properties of Phospholipid Membranes. 4. Interatomic Voids
M. G. Alinchenko, V. P. Voloshin, N. N. Medvedev, M. Mezei, L. Pártay, and P. Jedlovszky
J. Phys. Chem. B 109, 16490 (2005).
62. Computer Simulation Investigation of the Water-Benzene Interface in a Broad Range of Thermodynamic
States from Ambient to Supercritical Conditions
Á. Keresztúri and P. Jedlovszky
J. Phys. Chem. B 109, 16782 (2005).
63. Structure of the Liquid-Vapor Interface of Water-Methanol Mixtures as Seen from Monte Carlo
Simulations
L. Pártay, P. Jedlovszky, Á. Vincze, and G. Horvai
J. Phys. Chem. B 109, 20493 (2005).
64. Orientation of the 3-methylpyridine molecules at the liquid-vapour interface of their aqueous solution
L. Pártay, P. Jedlovszky, and G. Jancsó
Chem. Phys. Letters 420, 367 (2006).
65. Development of a new polarizable potential model of hydrogen fluoride and comparison with other effective models in liquid and supercritical states
L. Pártay, P. Jedlovszky, and R. Vallauri
J. Chem. Phys. 124, 184504 (2006).
66. Hydration of apolar solutes of varying size. A systematic study
P. Jedlovszky, M. Predota, and I. Nezbeda
Mol. Phys. 104, 2465 (2006).
67. A grand canonical Monte Carlo simulation study of water adsorption on a model soot particle
F. Moulin, S. Picaud, P. N. M. Hoang, L. Pártay, and P. Jedlovszky
Mol. Simul. 32, 487 (2006).
68. Molecular dynamics simulation of GM1 gangliosides embedded in a phospholipid membrane
M. Sega, P. Jedlovszky, and R. Vallauri
J. Mol. Liquids 129, 86 (2006).
69. Determination of the Adsorption Isotherm of Methanol on the Surface of Ice. An Experimental and Grand
Canonical Monte Carlo Simulation Study
P. Jedlovszky, L. Pártay, P. N. M. Hoang, S. Picaud, P. von Hessberg, and J. N. Crowley
J. Am. Chem. Soc. 128, 15300 (2006).
70. The structure of the zwitterionic headgroups in a DMPC bilayer as seen from Monte Carlo simulation;
comparisons with ionic solutions
P. Jedlovszky, L. Pártay, and M. Mezei
J. Mol. Liquids 131-132, 225 (2007).
71. Counterion and Surface Density Dependence of the Adsorption Layer of Ionic Surfactants at the
Air/Aqueous Solution Interface. A Computer Simulation Study
Gy. Hantal, L. B. Pártay, I. Varga, P. Jedlovszky, and T. Gilányi
J. Phys. Chem. B 111, 1769 (2007).
72. Formation of mesoscopic water networks in aqueous systems
L. B. Pártay, P. Jedlovszky, I. Brovchenko, and A. Oleinikova
Phys. Chem. Chem. Phys. 9, 1341 (2007).
73. Temperature dependence of the structure of the liquid-vapour interface of aqueous methanol solutions
L. B. Pártay, P. Jedlovszky, and G. Horvai
J. Mol. Liquids 134, 111 (2007).
74. A possible mechanism for pressure reversal of general anaesthetics from molecular simulations
P. L. Chau, P. N. M. Hoang, S. Picaud, and P. Jedlovszky
Chem. Phys. Letters 438, 294 (2007).
75. Adsorption of Octyl Cyanide at the Free Water Surface as Studied by Monte Carlo Simulation
P. Jedlovszky and L. B. Pártay
J. Phys. Chem. B 111, 5885 (2007).
76. Structure of coexisting liquid phases of supercooled water: Analogy with ice polymorphs
P. Jedlovszky, L. B. Pártay, A. P. Bartók, G. Garberoglio, and R. Vallauri
J. Chem. Phys. 126, 241103 (2007), Virt. J. Nanosc. Sci. Tech. 16 (3), 2007.
77. Percolation Transition in Supercritical Water. A Monte Carlo Simulation Study
L. B. Pártay, P. Jedlovszky, I. Brovchenko, and A. Oleinikova
J. Phys. Chem. B 111, 7603 (2007).
78. Free Energy Profile of Small Solute Molecules at the Free Surfaces of Water and Ice, as Determined by
Cavity Insertion Widom Calculations
L. B. Pártay, P. Jedlovszky, P. N. M. Hoang, S. Picaud, and M. Mezei
J. Phys. Chem. C 111, 9407 (2007).
79. Molecular Aggregates in Aqueous Solutions of Bile Acid Salts. Molecular Dynamics Simulation Study
L. B. Pártay, P. Jedlovszky, and M. Sega
J. Phys. Chem. B 111, 9886 (2007).
80. Calculation of the Adsorption Isotherm of Formaldehyde on Ice by Grand Canonical Monte Carlo
Simulation
Gy. Hantal, P. Jedlovszky, P. N. M. Hoang, and S. Picaud
J. Phys. Chem. C 111, 14170 (2007).
81. Statistical Thermodynamics Through Computer Simulation to Characterize Phospholipid Interactions
in Membranes
P. Jedlovszky and M. Mezei
in: Methods in Molecular Biology, vol. 400: methods in Membrane Lipids, ed. A. Dopico (Humana Press,
Totowa, 2007), pp.127-144.
82. Investigation of the saturated adsorption layer of 5-cyano-biphenyl and 5-cyano-terphenyl at the free water
surface by Monte Carlo simulation
P. Jedlovszky and L. B. Pártay
J. Mol. Liquids 136, 249 (2007).
83. Grand canonical Monte Carlo simulation of the adsorption isotherms of water molecules on model soot
particles
F. Moulin, S. Picaud, P. N. M. Hoang, and P. Jedlovszky
J. Chem. Phys. 127, 164719 (2007), Virt. J. Nanosc. Sci. Tech. 16 (20), 2007.
84. Morphology of Bile Salt Micelles, as Studied by Computer Simulation Methods
L. B. Pártay, M. Sega, and P. Jedlovszky
Langmuir 23, 12322 (2007).
85. Molecular dynamics and Monte Carlo simulations of organic compounds adsorbed on ice surfaces
S. Picaud, P. N. M. Hoang, L. B. Pártay, Gy. Hantal, and P. Jedlovszky
in: ICCMSE Conference Proceedings, CP963, Vol. 1: Computational Methods in Science and Engineering,
Theory and Computation: Old Problems and New Challenges, eds.: G. Maroulis and T. Simos (AIP, 2007),
pp. 296-307.
86. A new method for determining the interfacial molecules and characterizing the surface roughness in
computer simulations. Application to the liquid-vapor interface of water
L. B. Pártay, Gy. Hantal, P. Jedlovszky, Á. Vincze, and G. Horvai
J. Comp. Chem. 29, 945 (2008).
87. Properties of Free Surface of Water-methanol Mixtures. Analysis of the Truly Interfacial Molecular Layer
in Computer Simulation
L. B. Pártay, P. Jedlovszky, Á. Vincze, and G. Horvai
J. Phys. Chem. B 112, 5428 (2008).
88. Behavior of molecular oxygen at the liquid-liquid interface: A molecular dynamics simulation study
Á. Vincze, P. Jedlovszky, L. B. Pártay, and G. Horvai
Chem. Phys. Letters 457, 78 (2008).
89. Adsorption Isotherm of Formic Acid on the Surface of Ice, as Seen from Experiments and Grand Canonical
Monte Carlo Simulation
P. Jedlovszky, Gy. Hantal, K. Neuróhr, S. Picaud, P. N. M. Hoang, P. von Hessberg, and J. N. Crowley
J. Phys. Chem. C 112, 8976 (2008).
90. Structural and thermodynamic properties of different phases of supercooled liquid water
P. Jedlovszky, L. B. Pártay, A. P. Bartók, V. P. Voloshin, N. N. Medvedev, G. Garberoglio, and R. Vallauri
J. Chem. Phys. 128, 244503 (2008), Virt. J. Biol. Phys. Res. 16 (1) (2008).
91. Molecular level structure of the liquid/liquid interface. Molecular dynamics simulation and ITIM analysis
of the water-CCl4 system
L. B. Pártay, G. Horvai, and P. Jedlovszky
Phys. Chem. Chem. Phys. 10, 4754 (2008).
92. A Two-step Aggregation Scheme of Bile Acid Salts, as Seen From Computer Simulations
L. B. Pártay, M. Sega, and P. Jedlovszky
Progr. Colloid Polym. Sci. 135, 181 (2008).
93. Counterion Binding in Aqueous Solutions of Bile Acid Salts, as Studied by Computer Simulation Methods
L. B. Pártay, M. Sega, and P. Jedlovszky
Langmuir 24, 10729 (2008).
94. Investigation of the adsorption behaviour of acetone at the surface of ice. A grand canonical Monte Carlo simulation study
Gy. Hantal, P. N. M. Hoang, S. Picaud, and P. Jedlovszky
Phys. Chem. Chem. Phys. 10, 6369 (2008).
95. Hydration free energy difference of acetone, acetamide, and urea
P. Jedlovszky and A. Idrissi
J. Chem. Phys. 129, 164501 (2008).
96. Self-association of urea in aqueous solutions: A Voronoi polyhedron analysis study
A. Idrissi, P. Damay, K. Yukichi, and P. Jedlovszky
J. Chem. Phys. 129, 164512 (2008), Virt. J. Biol. Phys. Res. 16 (9) (2008).
97. A grand canonical Monte Carlo simulation of the aggregation of water molecules on chemically modified
soot particles
F. Moulin, S. Picaud, P. N. M. Hoang, L. B. Pártay, and P. Jedlovszky
Computing Letters 4, 105 (2008).
98. Molecular-scale Modeling of the Adsorption of Partially Oxidized Organic Compounds on Ice
Gy. Hantal, P. Jedlovszky, L. B. Pártay, S. Picaud, and P. N. M. Hoang
Trends in Phys. Chem.13, 1 (2008).
99. Pressure reversal of general anaesthetics: A possible mechanism from molecular dynamics simulations
P. L. Chau, P. Jedlovszky, P. N. M. Hoang, and S. Picaud
J. Mol. Liquids 147, 128 (2009).
100. GM1 Ganglioside Embedded in a Hydrated DOPC Membrane: A Molecular Dynamics Simulation Study
P. Jedlovszky, M. Sega, and R. Vallauri
J. Phys. Chem. B. 113, 4876 (2009).
101. Can existing models qualitatively describe the mixing behavior of acetone-water mixtures?
P. Jedlovszky, A. Idrissi, and G. Jancsó
J. Chem. Phys. 130, 124516 (2009).
102. Free Energy of Mixing of Pyridine and Its Methyl-Substituted Derivatives with Water, As Seen from
Computer Simulations
M. Darvas, P. Jedlovszky, and G. Jancsó
J. Phys. Chem. B. 113, 7615 (2009).
103. Response to "Comment on 'Can existing models qualitatively describe the mixing behavior of acetone-
water mixtures?'"
P. Jedlovszky, A. Idrissi, and G. Jancsó
J. Chem. Phys. 131, 157102 (2009).
104. Structure of the Liquid-Vapor Interface of Water-Acetonitrile Mixtures as Seen From Molecular
Dynamics Simulations and Identification of Truly Interfacial Molecules Analysis
L. B. Pártay, P. Jedlovszky, and G. Horvai
J. Phys. Chem. B. 113, 18173 (2009).
105. Molecular Level Properties of the Water-Dichloromethane Liquid/Liquid Interface, as Seen from
Molecular Dynamics Simulation and Identification of Truly Interfacial Molecules Analysis
Gy. Hantal, P. Terleczky, G. Horvai, L. Nyulászi, and P. Jedlovszky
J. Phys. Chem. C. 113, 19263 (2009).
106. Water in Contact with Magnetite Nanoparticles, as Seen from Experiments and Computer
Simulations
E. Tombácz, A. Hajdú, E. Illés, K. László, G. Garberoglio, and P. Jedlovszky
Langmuir 25, 13007 (2009).
107. Local structure in sub- and supercritical CO2: A Voronoi polyhedra analysis study
A. Idrissi, I. Vyalov, P. Damay, M. Kiselev, Y. P. Puhovski, and P. Jedlovszky
J. Mol. Liquids 153, 20 (2010).
108. Computer simulation and ITIM analysis of the surface of water-methanol mixtures containing traces of
water
M. Darvas, L. B. Pártay, P. Jedlovszky, and G. Horvai
J. Mol. Liquids 153, 88 (2010).
109. Molecular dynamics simulation and identification of truly interfacial molecules (ITIM) analysis of the
liquid-vapor interface of dimethyl sulfoxide
M. Darvas, K. Pojják, G. Horvai, and P. Jedlovszky
J. Chem. Phys. 132, 134701 (2010).
110. Water adsorption on hydrophilic and hydrophobic self-assembled monolayers as proxies for atmospheric
surfaces. A grand canonical Monte Carlo simulation study
M. Szőri, P. Jedlovszky, and M. Roeselová
Phys. Chem. Chem. Phys. 12, 4604 (2010).
111. Adsorption of Benzaldehyde at the Surface of Ice, Studied by Experimental Method and Computer
Simulation
M. Petitjean, Gy. Hantal, C. Chauvin, S. Le Calvé, P. N. M. Hoang, S. Picaud, and P. Jedlovszky
Langmuir 26, 9596 (2010).
112. Dynamical properties of supercooled water close to the liquid-liquid coexistence lines
P. Jedlovszky, G. Garberoglio, and R. Vallauri
J. Phys.: Condensed Matter 22, 284105 (2010).
113. Molecular level properties of the free water surface and different organic liquid/water interfaces, as seen
from ITIM analysis of computer simulation results
Gy. Hantal, M. Darvas, L. B. Pártay, G. Horvai, and P Jedlovszky
J. Phys.: Condensed Matter 22, 284112 (2010).
114. A Critical Assessment of Methods for the Intrinsic Analysis of Liquid Interfaces: 1. Surface Site
Distributions
M. Jorge, P. Jedlovszky, and M. N. D. S. Cordeiro
J. Phys. Chem. C 114, 11169 (2010).
115. Properties of the Liquid-Vapor Interface of Water-Dimethyl Sulfoxide Mixtures. A Molecular Dynamics
Simulation and ITIM Analysis Study
K. Pojják, M. Darvas, G. Horvai, and P. Jedlovszky
J. Phys. Chem. C 114, 12207 (2010).
116. Adsorption of Poly(Ethylene-Oxide) at the Free Water Surface. A Computer Simulation Study
Mária Darvas, Tibor Gilányi, and Pál Jedlovszky
J. Phys. Chem. B 114, 10995 (2010).
117. Water adsorption isotherms on porous onion-like carbonaceous particles. Simulations with the grand
canonical Monte Carlo method
Gy. Hantal, S. Picaud, P. N. M. Hoang, V. P. Voloshin, N. N. Medvedev, and P. Jedlovszky
J. Chem. Phys. 133, 144702 (2010).
118. A Critical Assessment of Methods for the Intrinsic Analysis of Liquid Interfaces: 2. Density Profiles
M. Jorge, Gy. Hantal, P. Jedlovszky, and M. N. D. S. Cordeiro
J. Phys. Chem. C 114, 18656 (2010).
119. Temperature and Pressure Dependence of the Properties of the Liquid-Liquid Interface. A Computer
Simulation and Identification of the Truly Interfacial Molecules Investigation of the Water-Benzene
System
L. B. Pártay, G. Horvai, and P. Jedlovszky
J. Phys. Chem. C 114, 21681 (2010).
120. Adsorption of Hydroxyacetone on Pure Ice Surfaces
M. Petitjean, M. Darvas, S. Le Calvé, P. Jedlovszky, and S. Picaud
ChemPhysChem. 11, 3921 (2010).
121. Molecular Dynamics Simulation of the Adsorption of Oxalic Acid on Ice Surface
M. Darvas, S. Picaud, and P. Jedlovszky
ChemPhysChem. 11, 3971 (2010).
122. Competitive Adsorption of Surfactants and Polymers at the Free Water Surface. A Computer Simulation
Study of the Sodium Dodecylsulfate - Poly(ethylene oxide) System
M. Darvas, T. Gilányi, and P. Jedlovszky
J. Phys. Chem. B 115, 933 (2011).
123. Solvation Free Energy Profile of the SCN- Ion Across the Water - 1,2-Dichloroethane Liquid/Liquid
Interface. A Computer Simulation Study
M. Darvas, M. Jorge, M. N. D. S. Cordeiro, and P. Jedlovszky
J. Phys. Chem. C 115, 11140 (2011).
124. Heterogeneity of the Local Structure in Sub and Supercritical Ammonia: A Voronoi Polyhedra Analysis
Abdenacer Idrissi, Mikhail Kiselev, Ivan Vyalov, Maxim Fedorov, and Pál Jedlovszky
J. Phys. Chem. B 115, 9646 (2011).
.
125. Assessment of the potential models of acetone/CO2 and ethanol/CO2 mixtures by computer simulation
and thermodynamic integration in liquid and supercritical states
Abdenacer Idrissi, Ivan Vyalov, Mikhail Kiselev, and Pál Jedlovszky
Phys. Chem. Chem Phys. 13, 16272 (2011).
126. Surface Hydrophilicity Dependent Water Adsorption on Mixed Self-Assembled Monolayers of C7 CH3
and C7 COOH Residues. A Grand Canonical Monte Carlo Simulation Study
Milán Szőri, Martina Roeselová, and Pál Jedlovszky
J. Phys. Chem. C 115, 19165 (2011).
127. Collective dynamics of supercooled water close to the liquid-liquid coexistence lines
Pál Jedlovszky, Giovanni Garberoglio, and Renzo Vallauri
Phys. Chem. Chem Phys. 13, 19823 (2011).
128. Water adsorption around oxalic acid aggregates: a molecular dynamics simulation of water nucleation on
organic aerosols
Mária Darvas, Sylvain Picaud, and Pál Jedlovszky
Phys. Chem. Chem Phys. 13, 19830 (2011).
129. Adsorption of Acetaldehyde on Ice, as Seen from Computer Simulation and Infrared Spectroscopy
Measurements
Mária Darvas, Jérôme Lasne, Carine Laffon, Philippe Parent, Sylvain Picaud, and Pál Jedlovszky
Langmuir 28, 4198 (2012).
130. Surface properties of the polarizable BK water model
Péter Kiss, Mária Darvas, András Baranyai, and Pál Jedlovszky
J. Chem. Phys. 136, 114706 (2012).
131. Detailed insight into the hydrogen bonding interactions in acetone-methanol mixtures.
A molecular dynamics simulation and Voronoi polyhedra analysis study
Abdenacer Idrissi, Kamil Polok, Wojciech Gadomski, Ivan Vyalov, Alexander Agapov,
Mikhail Kiselev, Mohamed Barj, and Pál Jedlovszky
Phys. Chem. Chem Phys. 14, 5979 (2012).
132. Modeling of Acetone-Water Mixtures – How Can Their Full Miscibility Reproduced
in Computer Simulations?
Anita Pinke and Pál Jedlovszky
J. Phys. Chem. B 116, 5977 (2012)
133. Anesthetic Molecules Embedded in a Lipid Membrane. A Computer Simulation Study
Mária Darvas, Paul N. M. Hoang, Sylvain Picaud, Marcello Sega, and Pál Jedlovszky
Phys. Chem. Chem Phys. 14, 12956 (2012).
134. Lateral dynamics of surfactants at the free water surface. A computer simulation study
Nóra A. Rideg, Mária Darvas, Imre Varga, and Pál Jedlovszky
Langmuir 28, 14944 (2012).
135. Two-dimensional percolation at the free water surface
Mária Darvas, George Horvai, and Pál Jedlovszky
J. Mol. Liquids 176, 33 (2012).
136. Identifying interfacial molecules in nonplanar interfaces: the generalized ITIM algorithm
Marcello Sega, Sofia S. Kantorovich, Pál Jedlovszky, and Miguel Jorge
J. Chem. Phys. 138, 044110 (2013).
137. Relation between the surface tension and roughness of the intrinsic liquid surface
Pál Jedlovszky, Mária Darvas, and George Horvai
Z. Naturforsch. B 68a, 123 (2013).
138. Adsorption of Aromatic Hydrocarbon Molecules at the Surface of Ice, As Seen by Grand Canonical
Monte Carlo Simulations
Zsuzsanna E. Mészár, György Hantal, Sylvain Picaud, and Pál Jedlovszky
J. Phys. Chem. C 117, 6719 (2013).
139. Molecular dynamics simulations of the water adsorption around malonic acid aerosol molecules
Mária Darvas, Sylvain Picaud, and Pál Jedlovszky
Phys. Chem. Chem Phys. 15, 10942 (2013).
140. Immersion Depth of Surfactants at the Free Water Surface. A Computer Simulation and
ITIM Analysis Study
Nóra Abrankó-Rideg, Mária Darvas, George Horvai, and Pál Jedlovszky
J. Phys. Chem. B 117, 8733 (2013).
141. Calculation of the Intrinsic Solvation Free Energy Profile of an Ionic Penetrant Across a Liquid/Liquid
Interface with Computer Simulations
Mária Darvas, Miguel Jorge, M. Natalia D. S. Cordeiro, Sofia S. Kantorovich, Marcello Sega, and Pál
Jedlovszky
J. Phys. Chem. B 117, 16148 (2013).
142. Free Energy of Mixing of Acetone and Methanol – a Computer Simulation Investigation
Abdenacer Idrissi, Kamil Polok, Mohammed Barj, Bogdan Marekha, Mikhail Kiselev, and Pál Jedlovszky
J. Phys. Chem. B 117, 16157 (2013).
143. Calculation of the intrinsic free energy profile of methane across the liquid/liquid interface
in computer simulations
Mária Darvas, Miguel Jorge, M. Natália D. S. Cordeiro, and Pál Jedlovszky
J. Mol. Liquids 189, 39 (2014).
144. Role of the fluidity of a liquid phase in determining the surface properties of the opposite phase
at the liquid-liquid interface
Júlia Kertész, Mária Darvas, Pál Jedlovszky, and George Horvai
J. Mol. Liquids 189, 122 (2014).
145. Adsorption of HCN at the Surface of Ice. A Grand Canonical Monte Carlo Simulation Study
Milán Szőri and Pál Jedlovszky
J. Phys. Chem. C 118, 3599 (2014).
146. Microscopic Origin of the Surface Tension Anomaly of Water
Marcello Sega, George Horvai, and Pál Jedlovszky
Langmuir 30, 2969 (2014).
147. Adsorption of H2O2 at the surface of Ih ice, as seen from grand canonical Monte Carlo simulations
Sylvain Picaud and Pál Jedlovszky
Chem. Phys. Letters 600, 73 (2014).
148. Thermodynamics of Mixing Water with Dimethyl Sulfoxide, as Seen from Computer Simulations
Abdenacer Idrissi, Bogdan Marekha, Mohammed Barj, and Pál Jedlovszky
J. Phys. Chem. B 118, 8724 (2014).
149. Two-dimensional percolation at the free water surface and its relation with the surface tension
anomaly of water
Marcello Sega, George Horvai, and Pál Jedlovszky
J. Chem. Phys. 141, 054707 (2014).
150. Floating Patches of HCN at the Surface of Their Aqueous Solutions – Can They Make "HCN World"
Plausible?
Balázs Fábián, Milán Szőri, and Pál Jedlovszky
J. Phys. Chem. C 118, 21469 (2014).
151. The local environment of the molecules in water-DMSO mixtures, as seen from computer simulations
and Voronoi polyhedra analysis
A. Idrissi, B. Marekha, M. Kiselev, and P. Jedlovszky
Phys. Chem. Chem Phys. 17, 8913 (2015).
152. Properties of the Liquid-Vapor Interface of Acetone-Methanol Mixtures, as Seen from Computer
Simulation and ITIM Surface Analysis
A. Idrissi, Gy. Hantal, and P. Jedlovszky
Phys. Chem. Chem Phys. 17, 8913 (2015).
153. Structure of the adsorption layer of various ionic and non-ionic surfactants at the free water surface, as
seen from computer simulation and ITIM analysis
Nóra Abrankó-Rideg, George Horvai, and Pál Jedlovszky
J. Mol. Liquids 205, 9 (2015).
154. The effect of anaesthetics on the properties of a lipid membrane in the biologically relevant phase:
a computer simulation study
B. Fábián, M. Darvas, S. Picaud, M. Sega, and P. Jedlovszky
Phys. Chem. Chem. Phys. 17, 14750 (2015).
155. Properties of the intrinsic surface of liquid acetone, as seen from computer simulations
Pál Jedlovszky, Balázs Jójárt, and George Horvai
Mol. Phys. 113, 985 (2015).
156. Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM
Analysis Study
B. Fábián, B. Jójárt, G. Horvai, and P Jedlovszky
J. Phys. Chem. C 119, 12473 (2015).
157. Adsorption of Methylene Fluoride and Methylene Chloride at the Surface of Ice under Tropospheric
Conditions: A Grand Canonical Monte Carlo Simulation Study
I. Sumi, S. Picaud, and P. Jedlovszky
J. Phys. Chem. C 119, 17243 (2015).
158. Layer-by-layer and intrinsic analysis of molecular and thermodynamic properties across soft interfaces
M. Sega, B. Fábián, and P. Jedlovszky
J. Chem. Phys. 143, 114709 (2015).
159. Molecular Dynamics Simulations of the Interaction between Water Molecules and Aggregates of Acetic
or Propionic Acid Molecules
B. Radola, S. Picaud, D. Vardanega, and P. Jedlovszky
J. Phys. Chem. B 119, 15662 (2015).
160. Local Structure in Terms of Nearest-Neighbor Approach in 1-Butyl-3-methylimidazolium-Based Ionic
Liquids: MD Simulations
B. A. Marekha, V. A. Koverga, E. Chesneau, O. N. Kalugin, T. Takamuku, P. Jedlovszky, and A. Idrissi
J. Phys. Chem. B 120, 5029 (2016).
161. Dynamics of the Water Molecules at the Intrinsic Liquid Surface As Seen from Molecular Dynamics
Simulation and Identification of Truly Interfacial Molecules Analysis
B. Fábián, M. V. Senćanski, I. N. Cvijetić, P. Jedlovszky, and G. Horvai
J. Phys. Chem. C 120, 8578 (2016).
162. Adsorption of Fluorinated Methane Derivatives at the Surface of Ice under Tropospheric Conditions, As Seen
from Grand Canonical monte Carlo Simulations
I. Sumi, B. Fábián, S. Picaud, and P. Jedlovszky
J. Phys. Chem. C 120, 17386 (2016).
163. Local lateral environment of the molecules at the surface of DMSO-water mixtures
B. Fábián, A. Idrissi, B. Marekha, and P. Jedlovszky
J. Phys.: Condensed Matter 28, 404002 (2016).
164. Pressure Profile Calculation with Mesh Ewald Methods
M. Sega, B. Fábián, and P. Jedlovszky
J. Chem. Theory Comput. 12, 4509 (2016).
165. Adsorption of Methylamine at the Surface of Ice. A Grand Canonical Monte Carlo Simulation Study
V. Szentirmai, M. Szőri, S. Picaud, and P. Jedlovszky
J. Phys. Chem. C 120, 23480 (2016).
166. How is the Surface Tension of Various Liquids Distributed along the Interface Normal?
M. Sega, B. Fábián, G. Horvai, and P. Jedlovszky
J. Phys. Chem. C 120, 27486 (2016).
167. Lateral Pressure Profile and Free Volume Properties in Phospholipid Membranes Containing Anesthetics
B. Fábián, M. Sega, V. P. Voloshin, N. N. Medvedev, and P. Jedlovszky
J. Phys. Chem. B 121, 2814 (2017).
168. Adsorption of Chlorinated Methane Derivatives at the Ice Surface. A Grand Canonical Monte Carlo
Simulation Study
I. Sumi, S. Picaud, and P. Jedlovszky
J. Phys. Chem. C 121, 7782 (2017).
169. Relation between the Liquid Spinodal Pressure and the Lateral Pressure Profile at the Liquid-Vapor
Interface
M. Sega, B. Fábián, A. R. Imre, and P. Jedlovszky
J. Phys. Chem. C 121, 12214 (2017).
170. Single Particle Dynamics at the Intrinsic Surface of Various Apolar, Aprotic Dipolar and Hydrogen
Bonding Liquids, As Seen from Computer Simulations
B. Fábián, M. Sega, G. Horvai, and P. Jedlovszky
J. Phys. Chem. B 121, 5582 (2017).
171. Nonzero Ideal Gas Contribution to the Surface Tension of Water
M. Sega, B. Fábián, and P. Jedlovszky
J. Phys. Chem. Letters 8, 2608 (2017).
172. Local Structure of Dilute Aqueous DMSO Solutions, as Seen From Molecular Dynamics Simulations
A. Idrissi, B. A. Marekha, M. Barj, F. A. Miannay, T. Takamuku, V. Raptis, J. Samios, P. Jedlovszky
J. Chem. Phys. 146, 234507 (2017).
173. Analysis of Mixed Formic and Acetic Acid Aggregates Interacting with Water. A Molecular Dynamics
Simulation Study
B. Radola, S. Picaud, D. Vardanega, P. Jedlovszky
J. Phys. Chem. C 121, 13863 (2017).
174. Miscibility and Thermodynamics of Mixing of Different Models of Formamide and Water in Computer
Simulation
B. Kiss, B. Fábián, A. Idrissi, M. Szőri, and P. Jedlovszky
J. Phys. Chem. B 121, 7147 (2017), Erratum: J. Phys. Chem. B 121, 9319 (2017).
175. Dependence of the adsorption of halogenated methane derivatives at the ice surface on their chemical
structure
I. Sumi, S. Picaud, and P. Jedlovszky
J. Mol. Liquids 245, 17 (2017).
176. Adsorption of Methylamine on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte
Carlo Simulation Study
R. A. Horváth, Gy. Hantal, S. Picaud. M. Szőri, and P. Jedlovszky
J. Phys. Chem. A 122, 3398 (2018).
177. On the calculation of the surface entropy in computer simulation
M. Sega, G. Horvai, and P. Jedlovszky
J. Mol. Liquids 262, 58 (2018).
178. Ammonia Clathrate Hydrate As Seen from Grand Canonical Monte Carlo Simulations
B. Fábián, S. Picaud, P. Jedlovszky, A. Guilbert-Lepoture, and O. Moussis
ACS Earth Space Chem. 2, 521 (2018).
179. Multiscale Modeling of Interfacial Oxidation Mechanism at Air/ Organic Interface: Reactions of CH2=CH-
Terminated Self-Assembled Monolayer with OH•, O3, and HO2•
K. Korcsok, M. Szőri, B. Fábián, S. Picaud, P. Jedlovszky, and B. Viskolcz
J. Phys. Chem. C 122, 9886 (2018).
180. Thermodynamics of Mixing Primary Alkanolamines with Water
A. Idrissi and P. Jedlovszky
J. Phys. Chem. B 122, 6251 (2018).
181. The impact of tensorial temperature on equilibrium thermodynamics
M. Sega and P. Jedlovszky
Phys. Chem. Chem. Phys. 20, 16910 (2018).
182. Investigation of the Liquid-Vapor Interface of Water-Formamide Mixtures by Computer Simulation and
Intrinsic Surface Analysis
B. Kiss, B. Fábián, A. Idrissi, M. Szőri, and P. Jedlovszky
J. Phys. Chem. C 122, 19639 (2018).
183. The local structure in BmimPF6/acetonitrile mixture: The charge distribution effect
V. Koverga, O. N. Kalugin, F. A. Miannay, Y. Smortsova, K. Golviznina, B. Marekha, P. Jedlovszky, A. Idrissi
Phys. Chem. Chem. Phys. 20, 21890 (2018).
184. Pytim: a Python Package for the Interfacial Analysis of Molecular Simulations
M. Sega, Gy. Hantal, B. Fábián, and P. Jedlovszky
J. Comp. Chem. 39, 2118 (2018).
185. Effect of general anesthetics on the properties of lipid membranes of various compositions
Gy. Hantal, B. Fábián, M. Sega, B. Jójárt, and P. Jedlovszky
BBA – Biomembranes 1861, 594 (2019).
186. Adsorption of Formamide at the Surface of Amorphous and Crystalline Ices under Interstellar
and Tropospheric Conditions. A Grand Canonical Monte Carlo Simulation Study
B. Kiss, S. Picaud, M. Szőri, and P. Jedlovszky
J. Phys. Chem. A 123, 2935 (2019).
187. Molecular-scale simulations of organic compounds on ice: application to atmospheric and interstellar
sciences
S. Picaud and P. Jedlovszky
Mol. Simul.45, 403 (2019).
188. Simulation of Membranes Containing General Anesthetics
P. Jedlovszky
in: Biomembrane Simulations. Computational Studies of Biological Membranes, ed. M. L. Berkowitz
(Taylor and Francis: New York, 2019), pp. 177-198.
189. Distance Angle Descriptors of the Interionic and Ion-Solvent Interactions in Imidazolium-based Ionic
Liquids Mixtures with Aprotic Solvents: a Molecular Dynamics Simulation Study
V. A. Koverga, Y. Smortsova, F. A. Miannay, O. N. Kalugin, T. Takamuku, P. Jedlovszky, B. Marekha,
M. N. D. S. Cordeiro, A. Idrissi
J. Phys. Chem. B 123, 6065 (2019).
190. Contribution of Different Molecules and Moieties to the Surface Tension in Aqueous Surfactant Solutions
Gy. Hantal, M. Sega, G. Horvai, and P. Jedlovszky
J. Phys. Chem. C 123, 16660 (2019).
191. Vapour-liquid equilibrium of acetone-CO2 mixtures of different compositions at the vicinity of the
critical point
B. Fábián, G. Horvai, A. Idrissi, and P. Jedlovszky
J. CO2 Utiliz. 34, 465 (2019).
192. Investigation of the liquid-vapour interface of aqueous methylamine solutions by computer simulation
methods
R. A. Horváth, B. Fábián, M. Szőri, and P. Jedlovszky
J. Mol. Liquids 288, 110978 (2019).
193. Single Particle Dynamics at the Liquid-Liquid Interface. Molecular Dynamics Simulation Study of the
Water-CCl4 System
B. Fábián, G. Horvai, M. Sega, and P. Jedlovszky
J. Phys. Chem. C 124, 2039 (2020).
194. Contribution of the two liquid phases to the interfacial tension at various water-organic
liquid-liquid interfaces
Gy. Hantal, B. Fábián, M. Sega, and P. Jedlovszky
J. Mol. Liquids 306, 112872 (2020).
195. Role of the Counterions in the Surface Tension of Aqueous Surfactant Solutions. A Computer Simulation
Study of Alkali Dodecyl Sulfate Systems
Gy. Hantal, M. Sega, G. Horvai, and P. Jedlovszky
Coll. Interfaces 4, 15 (2020)
196. Computer Simulation Investigation of the Adsorption of Cyanamide on Amorphous Ice at Low Temperature
P. Jedlovszky, R. A. Horváth, and M. Szőri
J. Phys. Chem. C 124, 10615 (2020).
197. Thermodynamics of mixing methanol with supercritical CO2 as seen from computer simulations
and thermodynamic integration
R. A. Horváth, G. Horvai, A. Idrissi, and Jedlovszky
Phys. Chem. Chem. Phys. 22, 11652 (2020).
198. Adsorption of Propylene Oxide on Amorphous Ice under Interstellar Conditions. A Grand Canonical Monte
Carlo Simulation Study
B. Kiss, M. Szőri, and P. Jedlovszky
J. Phys. Chem. C 124, 16402 (2020).
199. Surface Affinity of Alkali and Halide Ions in Their Aqueous Solution: Insight from Intrinsic Density
Analysis
Gy. Hantal, R. A. Horváth, J. Kolafa, M. Sega, and P. Jedlovszky
J. Phys. Chem. B 124, 9884 (2020).
200. Voronoi Polyhedra as a Tool for the Characterization of Inhomogeneous Distribution in 1-Butyl-3-
methylimidazolium Cation-Based Ionic Liquids
V. Koverga, N. Maity, F. A. Miannay, O. N. Kalugin, Á. Juhász, A. Świątek, K. Polok, T. Takamuku,
P. Jedlovszky, and A. Idrissi
J. Phys. Chem. B 124, 10419 (2020).
201. Single Particle Dynamics at the Intrinsic Surface of Aqueous Alkali Halide Solutions
Gy. Hantal, J. Kolafa, M. Sega, and P. Jedlovszky
J. Phys. Chem. B 125, 665 (2021).
202. Structure and Single Particle Dynamics of the Vapor-Liquid Interface of Acetone-CO2 Mixtures
B. Fábián, G. Horvai, A. Idrissi, and P. Jedlovszky
J. Mol. Liquids submitted. Inpress.